
Beanstalk - Farms
Update

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: September 5th, 2022 - November 14th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 9

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) UNDERLYING TOKENS CAN BE DRAINED THROUGH THE UN-

RIPEFACET.CHOP FUNCTION - CRITICAL 15

Description 15

Proof of Concept 17

Risk Level 17

Recommendation 17

Remediation Plan 18

3.2 (HAL-02) MULTIPLE UNDERFLOWS/OVERFLOWS - MEDIUM 19

Description 19

Risk Level 21

Recommendation 21

Remediation Plan 21

3.3 (HAL-03) LISTINGS CAN BE DELETED BY ANYONE - MEDIUM 22

Description 22

1



Code Location 22

Proof of Concept 23

Risk Level 24

Recommendation 24

Remediation Plan 24

3.4 (HAL-04) PLOTS CAN BE UNCONTROLLABLY SPLITTED - LOW 25

Description 25

Proof of Concept 25

Risk Level 26

Recommendation 26

Remediation Plan 26

3.5 (HAL-05) USING POSTFIX OPERATORS IN LOOPS - INFORMATIONAL 27

Description 27

Code Location 27

Risk Level 28

Recommendation 28

Remediation Plan 28

3.6 (HAL-06) UNNEEDED INITIALIZATION OF UINT256 VARIABLES TO 0 -

INFORMATIONAL 29

Description 29

Code Location 29

Risk Level 29

Recommendation 30

Remediation Plan 30

2



3.7 (HAL-07) USAGE OF AND OPERATOR IN REQUIRE STATEMENTS - INFORMA-

TIONAL 31

Description 31

Code Location 31

Risk Level 33

Recommendation 33

Remediation Plan 33

3.8 (HAL-08) OPTIMIZE UNSIGNED INTEGER COMPARISON - INFORMATIONAL

34

Description 34

Risk Level 34

Code Location 34

Recommendation 35

Remediation Plan 35

3.9 (HAL-09) INCOMPLETE NATSPEC DOCUMENTATION - INFORMATIONAL 36

Description 36

Risk Level 36

Recommendation 36

Remediation Plan 36

3.10 (HAL-10) INCREASE OPTIMIZER RUNS - INFORMATIONAL 37

Description 37

Risk Level 37

Code Location 37

Recommendation 37

Remediation Plan 38

3



3.11 (HAL-11) SOLC 0.7.6 COMPILER VERSION CONTAINS MULTIPLE BUGS -

INFORMATIONAL 39

Description 39

Risk Level 39

Recommendation 39

Remediation Plan 39

3.12 (HAL-12) OUT OF DATE OPENZEPPELIN PACKAGES - INFORMATIONAL 40

Description 40

Risk Level 40

Code Location 40

Recommendation 40

Remediation Plan 41

4



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 11/02/2022 Francisco González

0.2 Document Updates 11/10/2022 Francisco González

0.3 Document Updates 11/14/2022 Francisco González

0.4 Draft Review 11/14/2022 Kubilay Onur Gungor

0.5 Draft Review 11/15/2022 Gabi Urrutia

1.0 Remediation Plan 12/13/2022 Francisco González

1.1 Remediation Plan Review 12/13/2022 Roberto Reigada

1.2 Remediation Plan Review 12/13/2022 Piotr Cielas

1.3 Remediation Plan Review 12/13/2022 Gabi Urrutia

5



CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

Francisco
González

Halborn Francisco.Villarejo@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Francisco.Villarejo@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Piotr.Cielas@halborn.com


7

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Beanstalk engaged Halborn to conduct a security audit on their smart

contracts beginning on September 5th, 2022 and ending on November 14th,

2022. The security assessment was scoped to the smart contracts provided

in the GitHub repository BeanstalkFarms/Beanstalk.

This report also includes some findings that were already reported

and fixed in some parallel audits performed to separate protocol

components. However, since some of those vulnerabilities are present

in the scoped code, they have been included to improve readability by

unifying the findings and obtaining a standalone report which covers the

vulnerabilities present in the code without the need to switch between

different reports.

1.2 AUDIT SUMMARY

The team at Halborn was provided 10 weeks for the engagement and assigned

a full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Perform a re-audit of the complete BeanStalk codebase.

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified a few security risks that were mostly

addressed by the Beanstalk team.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/1447c2426a97a069cc633e6f8b2b1937c91d5da9


1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

9

EX
EC

UT
IV

E
OV

ER
VI

EW



RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the smart contracts contained in

the scoped repository.

Audit Commit ID:

1447c2426a97a069cc633e6f8b2b1937c91d5da9

Pod Marketplace V2 Fixed Commit ID:

- 0bdd376263b0fe94af84aaf4adb6391b39fa80ab

BIP 24 Fixed Commit ID:

- 6699e071626a17283facc67242536037989ecd91

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/1447c2426a97a069cc633e6f8b2b1937c91d5da9
https://github.com/BeanstalkFarms/Beanstalk/tree/0bdd376263b0fe94af84aaf4adb6391b39fa80ab
https://github.com/BeanstalkFarms/Beanstalk/tree/6699e071626a17283facc67242536037989ecd91


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 0 2 1 8

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)
(HAL-03)

(HAL-12) (HAL-04)

(HAL-05)
(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)
(HAL-10)
(HAL-11)

12

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - UNDERLYING TOKENS CAN BE
DRAINED THROUGH THE

UNRIPEFACET.CHOP FUNCTION
Critical SOLVED - 09/16/2022

HAL02 - MULTIPLE
UNDERFLOWS/OVERFLOWS

Medium SOLVED - 10/17/2022

HAL03 - LISTINGS CAN BE DELETED BY
ANYONE

Medium SOLVED - 10/27/2022

HAL04 - PLOTS CAN BE UNCONTROLLABLY
SPLITTED

Low SOLVED - 10/27/2022

HAL05 - USING POSTFIX OPERATORS IN
LOOPS

Informational ACKNOWLEDGED

HAL06 - UNNEEDED INITIALIZATION OF
UINT256 VARIABLES TO 0

Informational ACKNOWLEDGED

HAL07 - USAGE OF AND OPERATOR IN
REQUIRE STATEMENTS

Informational ACKNOWLEDGED

HAL08 - OPTIMIZE UNSIGNED INTEGER
COMPARISON

Informational ACKNOWLEDGED

HAL09 - INCOMPLETE NATSPEC
DOCUMENTATION

Informational ACKNOWLEDGED

HAL10 - INCREASE OPTIMIZER RUNS Informational ACKNOWLEDGED

HAL11 - SOLC 0.7.6 COMPILER VERSION
CONTAINS MULTIPLE BUGS

Informational ACKNOWLEDGED

HAL12 - OUT OF DATE OPENZEPPELIN
PACKAGES

Informational ACKNOWLEDGED

13

EX
EC

UT
IV

E
OV

ER
VI

EW



14

FINDINGS & TECH
DETAILS



3.1 (HAL-01) UNDERLYING TOKENS CAN
BE DRAINED THROUGH THE
UNRIPEFACET.CHOP FUNCTION -
CRITICAL

Description:

Note that this finding was also reported on the BIP24 audit, and it has

already been fixed by the Beanstalk team.

In the UnripeFacet, the chop() function is used to burn unripeTokens in

order to receive in exchange an underlyingToken like, for example, Beans:

Listing 1: UnripeFacet.sol (Line 61)

51 function chop(

52 address unripeToken ,

53 uint256 amount ,

54 LibTransfer.From fromMode ,

55 LibTransfer.To toMode

56 ) external payable nonReentrant returns (uint256 underlyingAmount)

ë {

57 underlyingAmount = getPenalizedUnderlying(unripeToken , amount)

ë ;

58

59 LibUnripe.decrementUnderlying(unripeToken , underlyingAmount);

60

61 LibTransfer.burnToken(IBean(unripeToken), amount , msg.sender ,

ë fromMode);

62

63 address underlyingToken = s.u[unripeToken ]. underlyingToken;

64

65 IERC20(underlyingToken).sendToken(underlyingAmount , msg.sender

ë , toMode);

66

67 emit Chop(msg.sender , unripeToken , amount , underlyingAmount);

68 }

The burn of the unripeTokens is done through the LibTransfer.burnToken()

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/token/0xbea0000029ad1c77d3d5d23ba2d8893db9d1efab


call:

Listing 2: LibTransfer.sol (Lines 87,95)

82 function burnToken(

83 IBean token ,

84 uint256 amount ,

85 address sender ,

86 From mode

87 ) internal returns (uint256 burnt) {

88 // burnToken only can be called with Unripe Bean , Unripe Bean

ë :3Crv or Bean token , which are all Beanstalk tokens.

89 // Beanstalk 's ERC -20 implementation uses OpenZeppelin 's

ë ERC20Burnable

90 // which reverts if burnFrom function call cannot burn full

ë amount.

91 if (mode == From.EXTERNAL) {

92 token.burnFrom(sender , amount);

93 burnt = amount;

94 } else {

95 burnt = LibTransfer.receiveToken(token , amount , sender ,

ë mode);

96 token.burn(burnt);

97 }

98 }

The LibTransfer.burnToken() function returns the actual amount of tokens

that were burnt.

The LibTransfer.From fromMode has 4 different modes:

• EXTERNAL

• INTERNAL

• EXTERNAL_INTERNAL

• INTERNAL_TOLERANT

With the INTERNAL_TOLERANT, fromMode tokens will be collected from the

user’s Internal Balance, and the transaction will not fail if there are

not enough tokens.

This INTERNAL_TOLERANT fromMode can be used in the UnripeFacet.chop()

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



call. As the chop() function is not checking the return value of the

LibTransfer.burnToken(), the contract will always assume that the full

amount is being burnt when that will not always be true. If a user

actually has 0 unripeTokens and uses the INTERNAL_TOLERANT fromMode, no

tokens will be burned at all, but the full amount of underlyingTokens

will be sent to the user.

Proof of Concept:

This test was done forking the Ethereum mainnet on block 15465331

(Sep-03-2022 12:16:18 PM +UTC):

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to save the return value of the LibTransfer.burnToken()

call and overwrite the amount variable with that return as shown below:

Listing 3: UnripeFacet.sol (Line 57)

51 function chop(

52 address unripeToken ,

53 uint256 amount ,

54 LibTransfer.From fromMode ,

55 LibTransfer.To toMode

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



56 ) external payable nonReentrant returns (uint256 underlyingAmount)

ë {

57 amount = LibTransfer.burnToken(IBean(unripeToken), amount , msg

ë .sender , fromMode);

58

59 underlyingAmount = getPenalizedUnderlying(unripeToken , amount)

ë ;

60

61 LibUnripe.decrementUnderlying(unripeToken , underlyingAmount);

62

63 address underlyingToken = s.u[unripeToken ]. underlyingToken;

64

65 IERC20(underlyingToken).sendToken(underlyingAmount , msg.sender

ë , toMode);

66

67 emit Chop(msg.sender , unripeToken , amount , underlyingAmount);

68 }

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by now taking also considering

the return value of the LibTransfer.burnToken().

Commit ID: 822863f253b251abb6ea656c122dd8d421dc42b3

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/commit/822863f253b251abb6ea656c122dd8d421dc42b3


3.2 (HAL-02) MULTIPLE
UNDERFLOWS/OVERFLOWS - MEDIUM

Description:

Note that this finding was also reported on Pod Market V2 audit, and it

has been already fixed by the Beanstalk team.

In some MarketplaceFacet related contracts, there are multiple overflows

that can cause some inconsistencies.

One of them is located in the _fillListing() function:

Listing 4: Listing.sol (Line 111)

97 function _fillListing(PodListing calldata l, uint256

ë beanAmount) internal {

98 bytes32 lHash = hashListing(

99 l.start ,

100 l.amount ,

101 l.pricePerPod ,

102 l.maxHarvestableIndex ,

103 l.mode

104 );

105 require(

106 s.podListings[l.index] == lHash ,

107 "Marketplace: Listing does not exist."

108 );

109 uint256 plotSize = s.a[l.account ]. field.plots[l.index ];

110 require(

111 plotSize >= (l.start + l.amount) && l.amount > 0,

112 "Marketplace: Invalid Plot/Amount."

113 );

114 require(

115 s.f.harvestable <= l.maxHarvestableIndex ,

116 "Marketplace: Listing has expired."

117 );

118

119 uint256 amount = beanAmount.mul (1000000).div(l.pricePerPod

ë );

120 amount = roundAmount(l, amount);

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



121

122 __fillListing(msg.sender , l, amount);

123 _transferPlot(l.account , msg.sender , l.index , l.start ,

ë amount);

124 }

The require(plotSize >= (l.start + l.amount)&& l.amount > 0, "

Marketplace: Invalid Plot/Amount."); overflow allows users to create

PodListings of very high amounts, although this cannot be exploited

since when removing the Plots from the seller through the removePlot()

function SafeMath is used and the transaction reverts:

Listing 5: PodTransfer.sol (Line 82)

72 function removePlot(

73 address account ,

74 uint256 id ,

75 uint256 start ,

76 uint256 end

77 ) internal {

78 uint256 amount = s.a[account ]. field.plots[id];

79 if (start == 0) delete s.a[account ]. field.plots[id];

80 else s.a[account ]. field.plots[id] = start;

81 if (end != amount)

82 s.a[account ]. field.plots[id.add(end)] = amount.sub(end);

83 }

On the other hand, a similar issue occurs in:

Order.sol

- Line 93:

require(s.a[msg.sender].field.plots[index] >= (start + amount), "

Marketplace: Invalid Plot.");

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



- Line 97:

uint256 placeInLineEndPlot = index + start + amount - s.f.harvestable;

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Using the SafeMath library in all the code lines described above is

recommended.

Remediation Plan:

SOLVED: The Beanstalk team solved the issue and now uses the SafeMath

library in all the code lines suggested.

Commit ID: 1ddb2f4773e39fc3a18e60a7fa0789a45e017f4c

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/commit/1ddb2f4773e39fc3a18e60a7fa0789a45e017f4c


3.3 (HAL-03) LISTINGS CAN BE
DELETED BY ANYONE - MEDIUM

Description:

Note that this finding was also reported on Pod Market V2 audit, and it

has been already fixed by the Beanstalk team.

MarketplaceFacet.sol and its related contracts and libraries implements

Listings and Orders, which allow users to buy and sell their pod in a

decentralized, trustless fashion.

When any user wants to sell their pods, a listing containing the plot,

the pods being sold within the plot, the price per pod, and the expiration

time (in the number of pods). When another user wants to buy these pods,

he has to fulfill the listing.

Listings can be partially fulfilled, meaning that users can buy only a

part of the pods listed. When a listing is partially fulfilled, a new

listing is created in the index (currentIndex + beanAmount) containing

the remaining unsold pods, and the previous listing is deleted.

However, it has been detected that a griefer could fill a listing

introducing 0 in beanAmount, forcing the new position to be created at

the same index, and then deleted, causing the position to be cancelled.

This could allow any well motivated griefer to constantly prevent any

user to sell his pods, cancel listings whose pods are about to become

harvestable, etc.

Code Location:

Listing 6: Listing.sol (Lines 134-140,142)

126 function __fillListing(

127 address to ,

128 PodListing calldata l,

129 uint256 amount

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



130 ) private {

131 // Note: If l.amount < amount , the function roundAmount

ë will revert

132

133 if (l.amount > amount)

134 s.podListings[l.index.add(amount).add(l.start)] =

ë hashListing(

135 0,

136 l.amount.sub(amount),

137 l.pricePerPod ,

138 l.maxHarvestableIndex ,

139 l.mode

140 );

141 emit PodListingFilled(l.account , to , l.index , l.start ,

ë amount);

142 delete s.podListings[l.index ];

143 }

Proof of Concept:

For this PoC, user2 will list 1000 pods on index 1000. Subsequently,

another user will fill that listing with 500 pods, meaning that a new

listing will be created on index 1500 with the remaining 500 pods. That

would represent a typical use case.

Thereafter, the chain will be reverted, and the same listing will be

created, but this time, the listing will be filled with 0 pods. That

means a new listing with the remaining pods (1000) will be created on the

same index (previous index + beanAmount which is 0), and then the listing

on the previous index will be deleted. This will result in having the

listing canceled by an external user:

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended first to delete the original listing when it gets

partially fulfilled and then create the new one containing the remaining

pods. This way, it can be assured that the new listing will not be deleted

in case it is created in the same index as the previous one (listings

with 0 start parameters and filled with 0 beanAmount).

Remediation Plan:

SOLVED: The Beanstalk team solved the issue by switching the order in

which the new listing is created, and the original one is removed, ensuring

that it does not get deleted.

Commit ID: b6a567d842e72c73176099ffd8ddb04cae2232e6

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/commit/b6a567d842e72c73176099ffd8ddb04cae2232e6


3.4 (HAL-04) PLOTS CAN BE
UNCONTROLLABLY SPLITTED - LOW

Description:

Note that this finding was also reported on Pod Market V2 audit, and it

has been already fixed by the Beanstalk team.

As described in the previous finding, the Marketplace can be used to buy

and sell pods, and listings or orders can be partially filled. When an

order or listing is partially filled, the pods contained on each plot are

split to be able to assign the acquired pods to the buyer.

However, it has been detected that there is no limit on the granularity in

which the plots can be split. This allows any griefer to fill any listing

or orders with the minimal amount of beanAmount allowed by the data type

(1), which would cause, in the case of orders, the buyer would end with

a large amount of tiny plots, which would be extremely uncomfortable to

manage.

This could also naturally happen without needing a griefer. If any user

creates a large order that many users partially fulfill, that will end

up in many sub-plots, which would have to be separately sold, harvested,

etc. This also means that gas costs would be increased.

Proof of Concept:

For this PoC, user1 will create a 1000 pods orders. Thereafter, the user2

user will partially fill that listing with 1 pod from his plot on index

1000, but he will choose 998 as the first pod.

Subsequently, the original plot will be split into 3 subplots now with a

single order fill:

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Suppose this gets repeated over time (intentionally or unintentionally).

In that case, it will result in many plots containing a few pods each,

which would significantly increase management gas costs.

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to introduce a parameter that defines the minimum fill

amount for orders and listings to prevent plots from being split into

smaller than desired subplots.

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by adding a minFillAmount

parameter in listings and orders to allow users to control the minimum

desired plot size.

Commit ID: bd26a50db10af2284df73be08c79f53df41c49ce

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/commit/bd26a50db10af2284df73be08c79f53df41c49ce


3.5 (HAL-05) USING POSTFIX
OPERATORS IN LOOPS - INFORMATIONAL

Description:

In the loops below, postfix (e.g. i++) operators were used to increment

or decrement variable values. In loops, using prefix operators (e.g. ++i)

costs less gas per iteration than using postfix operators.

Code Location:

CurvePrice.sol

- Line 77:

for (uint _i = 0; _i < xp.length; _i++){

- Line 84:

for (uint _i = 0; _i < 256; _i++){

- Line 86:

for (uint _j = 0; _j < xp.length; _j++){

BeanstalkPrice.sol

- Line 21:

for (uint256 i = 0; i < p.ps.length; i++){

LibPlainCurveConvert.sol

- Line 79:

for (uint256 k = 0; k < 256; k++){

LibDiamond.sol

- Line 104:

for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++)

{

- Line 129:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

selectorIndex++){

- Line 147:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



selectorIndex++){

- Line 162:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

selectorIndex++){

SiloFacet.sol

- Line 108:

for (uint256 i = 0; i < amounts.length; i++){

DiamondLoupeFacet.sol

- Line 32:

for (uint256 i; i < numFacets; i++){

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This does not only apply to the iterator

variable. It also applies to increment/decrement done inside the loop

code block.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.6 (HAL-06) UNNEEDED
INITIALIZATION OF UINT256 VARIABLES
TO 0 - INFORMATIONAL

Description:

As i is an uint256, it is already initialized to 0. uint256 i = 0

reassigns the 0 to i which wastes gas.

Code Location:

CurvePrice.sol

- Line 77:

for (uint _i = 0; _i < xp.length; _i++){

- Line 84:

for (uint _i = 0; _i < 256; _i++){

- Line 86:

for (uint _j = 0; _j < xp.length; _j++){

BeanstalkPrice.sol

- Line 21:

for (uint256 i = 0; i < p.ps.length; i++){

LibPlainCurveConvert.sol

- Line 79:

for (uint256 k = 0; k < 256; k++){

SiloFacet.sol

- Line 108:

for (uint256 i = 0; i < amounts.length; i++){

Risk Level:

Likelihood - 1

Impact - 1

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to not initialize uint variables to 0 to save some gas.

For example, use instead:

for (uint256 i; i < accounts.length; ++i){

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.7 (HAL-07) USAGE OF AND OPERATOR
IN REQUIRE STATEMENTS -
INFORMATIONAL

Description:

Instead of using the && operator in a single require statement to check

multiple conditions, using multiple require statements with one condition

per require statement will save 8 GAS per condition.

The gas difference would only be materialized if the revert condition is

met.

Code Location:

Listing 7: LibTokenSilo.sol (Line 107)

106 require(

107 newBase <= uint128 (-1) && newAmount <= uint128 (-1)

ë ,

108 "Silo: uint128 overflow."

109 );

Listing 8: MarketplaceFacet.sol (Lines 129,134)

128 require(

129 sender != address (0) && recipient != address (0),

130 "Field: Transfer to/from 0 address."

131 );

132 uint256 amount = s.a[sender ]. field.plots[id];

133 require(amount > 0, "Field: Plot not owned by user.");

134 require(end > start && amount >= end , "Field: Pod range

ë invalid.");

135

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 9: Listing.sol (Line 60)

59 require(

60 plotSize >= start.add(amount) && amount > 0,

61 "Marketplace: Invalid Plot/Amount."

62 );

Listing 10: Listing.sol (Line 111)

110 require(

111 plotSize >= (l.start + l.amount) && l.amount > 0,

112 "Marketplace: Invalid Plot/Amount."

113 );

Listing 11: FieldFacet.sol (Line 48)

47 require(

48 sowAmount >= minAmount && amount >= minAmount &&

ë minAmount > 0,

49 "Field: Sowing below min or 0 pods."

50 );

Listing 12: FieldFacet.sol (Line 50)

47 require(

48 sowAmount >= minAmount && amount >= minAmount &&

ë minAmount > 0,

49 "Field: Sowing below min or 0 pods."

50 );

Listing 13: CurveFacet.sol (Line 370)

370 require(i < MAX_COINS_128 && j < MAX_COINS_128 , "Curve:

ë Tokens not in pool");

Listing 14: CurveFacet.sol (Line 387)

387 require(i < MAX_COINS_128 && j < MAX_COINS_128 , "Curve:

ë Tokens not in pool");

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 15: ConvertFacet.sol (Line 144)

144 require(bdv > 0 && amount > 0, "Convert: BDV or amount is

ë 0.");

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

If possible, it is recommended to split the different conditions on

each require statement into different statements to both improve code

readability and save gas.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.8 (HAL-08) OPTIMIZE UNSIGNED
INTEGER COMPARISON - INFORMATIONAL

Description:

The check != 0 costs less gas compared to > 0 for unsigned integers in

require statements with the optimizer enabled. While it may seem that

> 0 is cheaper than !=0, this is only true without the optimizer enabled

and outside a require statement. If the optimizer is enabled at 10k and

it is in a require statement, that would be more gas efficient.

Risk Level:

Likelihood - 1

Impact - 1

Code Location:

ConvertFacet.sol

- Line 144:

require(bdv > 0 && amount > 0, "Convert: BDV or amount is 0.");

FieldFacet.sol

- Line 48:

sowAmount >= minAmount && amount >= minAmount && minAmount > 0,

- Line 93:

require(pods > 0, "Field: Plot is empty.");

FundraiserFacet.sol

- Line 46:

require(remaining > 0, "Fundraiser: already completed.");

Listing.sol

- Line 60:

plotSize >= start.add(amount)&& amount > 0,

- Line 64:

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



pricePerPod > 0,

- Line 111:

plotSize >= (l.start + l.amount)&& l.amount > 0,

- Line 151:

s.a[account].field.plots[index] > 0,

MarketplaceFacet.sol

- Line 133:

require(amount > 0, "Field: Plot not owned by user.");

Order.sol

- Line 62:

require(amount > 0, "Marketplace: Order amount must be > 0.");

SiloFacet.sol

- Line 107:

require(amounts.length > 0, "Silo: amounts array is empty");

- Line 109:

require(amounts[i] > 0, "Silo: amount in array is 0");

Recommendation:

Consider changing > 0 comparison with != 0.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.9 (HAL-09) INCOMPLETE NATSPEC
DOCUMENTATION - INFORMATIONAL

Description:

Natspec documentation are useful for internal developers that need to

work on the project, external developers that need to integrate with the

project, auditors that have to review it but also for end users given

that many chain explorers have officially integrated the support for it

directly on their site.

It has been detected that, while many contracts have a complete natspec

documentation, other contracts are little to no documented.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider adding the missing natspec documentation.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.10 (HAL-10) INCREASE OPTIMIZER
RUNS - INFORMATIONAL

Description:

Solidity 0.8.7 has a good optimizer that saves a gas when compiling

to bytecode. The team can use it by increasing the number of runs to

something like 2000 at least in the config.

Risk Level:

Likelihood - 1

Impact - 1

Code Location:

Config File

Listing 16

1 solidity: {

2 version: "0.7.6",

3 settings: {

4 optimizer: {

5 enabled: true ,

6 runs: 1000

7 }

8 }

9 },

Recommendation:

Consider increasing optimizer runs.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/blob/1447c2426a97a069cc633e6f8b2b1937c91d5da9/protocol/hardhat.config.js#L112


Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.11 (HAL-11) SOLC 0.7.6 COMPILER
VERSION CONTAINS MULTIPLE BUGS -
INFORMATIONAL

Description:

The scoped contracts have configured the Solidity version to 0.7.6 in

Hardhat configuration file. The latest solidity compiler version, 0.8.17

, fixed important bugs in the compiler along with new native protections,

such as the arithmetic checks now performed by default, preventing

plausible under/overflows. The current version is missing the following

fixes: 0.8.0, 0.8.1, 0.8.2, 0.8.3, 0.8.4, 0.8.5, 0.8.6, 0.8.7, 0.8.8,

0.8.9, 0.8.12, 0.8.13, 0.8.14, 0.8.15, 0.8.16, 0.8.17.

The official Solidity recommendations are that you should use the latest

released version of Solidity when deploying contracts. Apart from

exceptional cases, only the most recent version receives security fixes.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use the latest Solidity compiler version as possible.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ethereum/solidity/releases/tag/v0.8.0
https://github.com/ethereum/solidity/releases/tag/v0.8.1
https://github.com/ethereum/solidity/releases/tag/v0.8.2
https://github.com/ethereum/solidity/releases/tag/v0.8.3
https://github.com/ethereum/solidity/releases/tag/v0.8.4
https://github.com/ethereum/solidity/releases/tag/v0.8.5
https://github.com/ethereum/solidity/releases/tag/v0.8.6
https://github.com/ethereum/solidity/releases/tag/v0.8.7
https://github.com/ethereum/solidity/releases/tag/v0.8.8
https://github.com/ethereum/solidity/releases/tag/v0.8.9
https://github.com/ethereum/solidity/releases/tag/v0.8.12
https://github.com/ethereum/solidity/releases/tag/v0.8.13
https://github.com/ethereum/solidity/releases/tag/v0.8.14
https://github.com/ethereum/solidity/releases/tag/v0.8.15
https://github.com/ethereum/solidity/releases/tag/v0.8.16
https://github.com/ethereum/solidity/releases/tag/v0.8.17


3.12 (HAL-12) OUT OF DATE
OPENZEPPELIN PACKAGES -
INFORMATIONAL

Description:

The OpenZeppelin packages used are out of date, it is good practice

to use the latest version of these packages. Please note that this

finding only will apply if Solidity version is upgraded from 0.7.6, since

OpenZeppelin’s 3.4.0 is the last version supporting Solidity <0.8.0.

Risk Level:

Likelihood - 1

Impact - 2

Code Location:

Package Json

Listing 17

1 "dependencies": {

2 "@openzeppelin/contracts": "^3.4.0",

3 "@openzeppelin/contracts -upgradeable": "^3.4.0",

4 "dotenv": "^10.0.0",

5 "eth -permit": "^0.2.1",

6 "keccak256": "^1.0.6",

7 "merkletreejs": "^0.2.31"

8 }

Recommendation:

Update the versions of @openzeppelin/contracts and @openzeppelin/contracts-upgradeable

to be the latest in package.json. It is also recommended to checking

the versions of other dependencies as a precaution, as they may include

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/blob/1447c2426a97a069cc633e6f8b2b1937c91d5da9/protocol/package.json#L29


important bug fixes.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Code Location
	Recommendation
	Remediation Plan



